On the mechanism of fluid transport across corneal endothelium and epithelia in general.

نویسنده

  • Jorge Fischbarg
چکیده

The mechanism by which fluid is transported across epithelial layers is still unclear. The prevalent idea is that fluid traverses these layers transcellularly, driven by local osmotic gradients secondary to electrolyte transport and utilizing the high osmotic permeability of aquaporins. However, recent findings that some aquaporin knockout mice epithelia transport fluid sow doubts on local osmosis. This review discusses recent evidence in corneal endothelium that points instead to electro-osmosis as the mechanism underlying fluid transport. In this concept, a local recirculating electrical current would result in electro-osmotic coupling at the level of the intercellular junctions, dragging fluid via the paracellular route. The text also mentions possible mechanisms for apical bicarbonate exit from endothelial cells, and discusses whether electro-osmosis could be a general mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins.

The mechanism of epithelial fluid transport remains unsolved, which is partly due to inherent experimental difficulties. However, a preparation with which our laboratory works, the corneal endothelium, is a simple leaky secretory epithelium in which we have made some experimental and theoretical headway. As we have reported, transendothelial fluid movements can be generated by electrical curren...

متن کامل

The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium

The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Ka...

متن کامل

Mechanism of fluid transport across corneal endothelium and other epithelial layers: a possible explanation based on cyclic cell volume regulatory changes.

Maintenance of normal corneal transparency and the possible loss of it in disease continue to be relevant clinical issues. The possibility of control of corneal hydration (hence transparency) by the active intervention of the corneal limiting layers was raised for the first time by Davson in an article in the BJO in 1949. Thanks to the discovery of endothelial fluid transport by Maurice and the...

متن کامل

Fluid transport by cultured corneal epithelial cell layers.

BACKGROUND/AIMS Fluid transport across the in vitro corneal epithelium is short lived, hence difficult to detect and characterise. Since stable rates of fluid transport across several cultured epithelial cell layers have been demonstrated, the behaviour of confluent SV40 transformed rabbit corneal epithelial cells (tRCEC) grown on permeable supports was examined. METHODS Fluid transport was d...

متن کامل

Wavelet analysis of corneal endothelial electrical potential difference reveals cyclic operation of the secretory mechanism.

The corneal endothelium is a fluid-transporting epithelium. As other similar tissues, it displays an electrical potential of ~1 mV (aqueous side negative) across the entire layer [transendothelial potential difference (TEPD)]. It appears that this electrical potential is mainly the result of the transport of anions across the cell layer (from stroma to aqueous). There is substantial evidence th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental zoology. Part A, Comparative experimental biology

دوره 300 1  شماره 

صفحات  -

تاریخ انتشار 2003